A Year’s Work Condensed into One Hour
Last week, I presented a webinar through the continuing education website, AudiologyOnline, for a number of audiologists around the country. The same week the year prior, I launched this blog. So, for me, the webinar was basically a culmination of the past year’s blog posts, tweets and videos that I’ve generated, distilled into a one-hour presentation. By having to consolidate so many things I have learned into a single hour, it helped me to choose the things that I thought were most pertinent to the hearing healthcare professional.
If you’re interested, feel free to view the webinar using this link (you’ll need to register, though you can register for free and there’s no type of commitment): https://www.audiologyonline.com/audiology-ceus/course/connectivity-and-future-hearing-aid-31891
Some of My Takeaways
Why This Time is Different
The most rewarding and fulfilling part of this process has been to see the way things have unfolded and the technological progress that has been made both with the hardware and software of the in-the-ear devices and also the rate at which the emerging use cases for said devices are maturing. During the first portion of my presentation, I laid out why I feel this time is different from any previous era where disruption might feel as if it’s on the doorstep, yet doesn’t come to pass, and that’s largely due to the fact that the underlying technology has matured so much of late.
I would argue that the single biggest reason why this time is different is due to the smartphone supply chain, or as I stated in my talk – The Peace Dividends of the Smartphone War (props to Chris Anderson for describing this phenomenon so eloquently). Through the massive, unending proliferation of smartphones around the world, the components that comprise the smartphone (which also comprise pretty much all consumer technology) have gotten incredibly cheap and accessible.
Due to these economies of scale, there is a ton of innovation occurring with each component (sensors, processors, batteries, computer chips, microphones, etc). This means more companies than ever, from various segments, are competing to set themselves apart in any way they can in their respective industries, and therefore are providing innovative breakthroughs for the rest of the industry to benefit from. So, hearing aids and hearables are benefiting from breakthroughs occurring in smart speakers and drones because much of the innovation can be reaped and applied across the whole consumer technology space, rather than just limited to one particular industry.
Learning from Apple
Another point that I really tried to hammer home is the fact that our “connected” in-the-ear devices are now considered “exotropic” meaning that they appreciate in value over time. Connectivity enables the ability for the device to enhance itself, through software/firmware updates and app integration, even after the point-of-sale; much like a smartphone. So, in a similar fashion to our hearing aids and hearables reaping the innovation from other consumer technology innovation occurring elsewhere, connectivity does a similar thing – it enables network effects.
If you study Apple and examine why the iPhone was so successful, you’ll see that its success was largely predicated on the iOS app store, which served as a marketplace that connected developers with users. The more customers (users) there were, the more incentive there was to come and sell your goods as a merchant (developers) in the marketplace (app store). Therefore the marketplace grew and grew as the two sides constantly incentivized one another to grow, which compounded the growth.
That phenomenon I just described is called two-sided network effects and we’re beginning to see the same type of network effects take hold with our body-worn computers. That’s why a decent portion of my talk was spent around the Apple Watch. Wearables, hearables or smart hearing aids – they’re all effectively the same thing: a body-worn computer. Much of the innovation and use cases beginning to surface from the Apple Watch can be applied to our ear-worn computers too. Therefore, Apple Watch users and hearable users comprise the same user-base to an extent (they’re all body computers), which means that developers creating new functionality and utility for the Apple Watch might indirectly (or directly) be developing applications for our in-the-ear devices too. The utility and value of our smart hearing aids and hearables will just continue to rise, long after the patient has purchased their device, making for a much stronger value proposition.
Smart Assistant Usage will be Big
One of the most exciting use cases that I think is on the cusp of breaking through in a big way in this industry is smart assistant integration into the hearing aids (already happening in hearables). I’ve attended multiple conferences dedicated to this technology and have posted a number of blogs on smart assistants and the Voice user interface so, I don’t want to rehash every reason why I think this is going to be monumental for the product offering of this industry, but the main takeaway is this: the group that is adopting this new user interface the fastest is the same cohort that makes up the largest contingent of hearing aid wearers – the older adults. The reason for this fast adoption, I believe, is because there are few limitations to speaking and issuing commands/controlling your technology with your voice. This is why Voice is so unique; It’s conducive to the full age spectrum from kids to older adults, while something like the mobile interface isn’t particularly conducive to older adults who might have poor eyesight, dexterity or mobility.
This user interface and the smart assistants that mediate the commands are incredibly primitive today relative to what they’ll mature to become. Jeff Bezos famously quipped in 2016 in regard to this technology that, “It’s the first inning. It might even be the first guy’s up at bat.” Even in the technology’s infancy, the adoption of smart speakers among the older cohort is surprising and leads one to believe that they’re beginning to grow a dependency on smart assistant mediated voice commands, rather than tap, touch and swiping on their phones. Once this becomes integrated into hearing aids, patients will be able to conduct many of the same functions that you or I do with our phones, simply by asking their smart assistant to do that for them. One’s hearing aid serving the role (to an extent) of their smartphone further strengthens the value proposition of the device.
Biometric Sensors
If there’s one set of use cases that I think can rival the overall utility of Voice, it would be the implementation of biometric sensors into ear-worn devices. To be perfectly honest, I am startled how quickly this is already beginning to happen, with Starkey making the first move with the introduction of a gyroscope and accelerometer into its Livio AI hearing aid allowing for motion tracking. These sensors support the use cases of fall detection and fitness tracking. If “big data” was the buzz of the past decade, then “small data”, or personal data, will be the buzz of the next 10 years. Life insurance companies like John Hancock are introducing policies built around fitness data, converting this feature from a “nice to have” to a “need to have” for those that need to be wearing an-all day data recorder. That’s exactly the role the hearing aid is shaping up to serve – a data collector.
The type of data being recorded is really only limited to the type of sensors that are embedded into the device, and we’ll soon see the introduction of PPG sensors, as Valencell and Sonion plan to release a commercially available sensor small enough to fit into a RIC hearing available in 2019 for OEMs to implement into their offerings. These light-based sensors are currently built into the Apple Watch and provide the ability to track your hear rate. There have been a multitude of folks who have cited their Apple Watch for saving their life, as they were alerted to abnormal spikes in their resting heart rates, which were discovered to be life-threatening abnormalities in their cardiac activity. So, we’re talking about hearing aids acting as data collectors and preventative health tools that might alert the hearing aid wearer to a life-threatening condition.
As these type of sensors continue to shrink in size and become more capable, we’re likely to see more types of data that can be harvested, such as blood pressure and other cardiac data from the likes of an EKG sensor. We could potentially even see a sensor that’s capable of gathering glucose levels in a non-invasive way, which would be a game-changer for the 100 million people with diabetes or pre-diabetes. We’re truly at the tip of iceberg with this aspect of the devices, and this would mean that the hearing healthcare professional is a necessary component (fitting the “data collector”) for the cardiologist or physician that needs their patient’s health data monitored.
More to Come
This is just some of what’s happened across the past year. One year! I could write another 1500 words on interesting developments that have occurred this year, but these are my favorites. There is seemingly so much more to come with this technology and as these devices continue their computerized transformation into looking like something more akin to the iPhone, there’s no telling what other use cases might emerge. As the movie Field of Dreams so famously put it, “If you build it, they will come.” Well, the user base of all our body-worn computers continues to grow and further enticing the developers to come make their next big pay day. I can’t wait to see what’s to come in year two and I fully plan on ramping up my coverage of all the trends converging around the ear. So stay tuned and thank you to everyone who has supported me and read this blog over this first year (seriously, every bit of support means a lot to me).
-Thanks for Reading-
Dave