Biometrics, hearables, Smart assistants, Trends

The Innovation Happening Inside Hearables and Hearing Aids

Smartphones White Flag

The Peace Dividends of the Smartphone War

One of the biggest byproducts of the mass proliferation of smartphones around the planet is the fact that the components inside the devices are becoming increasingly more powerful and sophisticated, while simultaneously becoming smaller and less expensive. Chris Anderson, the CEO of 3D Robotics, refers to this as the, “Peace Dividends of the Smartphone Wars,” where he says:

The peace dividend of the smartphone wars, which is to say that the components in a smartphone — the sensors, the GPS, the camera, the ARM core processors, the wireless, the memory, the battery — all that stuff, which is being driven by the incredible economies of scale and innovation machines at Apple, Google, and others, is now available for a few dollars.

The race to outfit the planet with billions of smartphones served as the foundation for the feasibility of consumer drones, self-driving cars, VR headsets, AR Glasses, dirt-cheap smart speakers, our wearables & hearables, and so many other consumer technology products that have emerged in the past decade. All of these consumer products directly benefit from the efficacy and improvements birthed by the smartphone supply chain.

Since this blog is focused on innovation occurring around ear-worn technology, let’s examine some of the different peace dividends being reaped by hearing aid and hearables manufacturers and how those look from a consumer’s standpoint.

Solving the Connectivity Dilemma

Ever since the debut of the first, “made for iPhone” hearing aid in 2013 (the Linx), each of the major hearing aid manufacturers have followed suit in the pursuit to provide seamless connectivity to the users’ smartphone. This type of connectivity was limited to iOS up until September 2016, when Sonova released it’s Audeo B hearing aid which used a different Bluetooth protocol that allowed for universal connectivity to all smartphones. To keep the momentum going, Google just announced that its Pixel and Pixel 2 smartphones will allow for pairing of any type of Bluetooth hearing aid. The hearing aids and the phones are both becoming more compatible with each other. Every year, we seem to move closer and closer to having universal connectivity among our smartphones and Bluetooth hearing aids.

While connectivity is great and opens up a ton of different new opportunities, it also creates a battery drain on the devices. This poses a challenge to the manufacturers of these super small devices because while the majority of components packed inside these devices have been shrinking in size, the one key component that doesn’t really shrink is the battery.

There are a few things that the manufacturers are doing to circumvent this roadblock based on recent developments largely due to the smartphone supply chain. The first is rechargeability-on-the-go. In the hearables space, you’ll see that pretty much every device has a companion charging case, from Airpods to IQ Buds to Bragi Dash Pro. Hearing aids, which have long been powered by disposable, zinc-air batteries (which last about 4-7 days depending on usage), are now quickly going the rechargeable route as well. Many of which can be charged in similar companion cases akin to what we’re using with hearables.

Rechargeability is a good step forward but it doesn’t really solve the issue of draining batteries quickly. So, if we can’t fit a bigger battery in such a small space and battery innovation is currently stagnant, engineers were forced to look at how we actually use the power. Enter into the equation, computer chips.

Chris Dixon - computers are getting cheaper
Computers are steadily getting cheaper – From Chris Dixon’s What’s Next in Computing

Chip’in In

I’ve written about this before, but the W1 chip that Apple debuted in 2016 was probably one of the biggest moments for the whole hearables industry. Not only did it solve the reliable pairing issue (this chip is responsible for the fast-pairing of AirPods), but it also uses “low-power” Bluetooth, ultimately providing 5 hours of listening time before you need to pop them in their charging case (15 minutes of charge = another 3 hours). With this one chip, Apple effectively removed the two largest detractors to people adopting hearables: battery life and reliable pairing.

Apple has since debuted an updated, improved W2 chip used in its Apple Watch that will likely make its way to AirPods version two. Each iteration will likely continue to increase battery time.

Not to be outdone, Qualcomm introduced its new chipset the QCC5100 at CES this January. Qualcomm’s SVP of Voice & Music, Andy Murray, stated:

“This breakthrough single-chip solution is designed to dramatically reduce power consumption and offers enhanced processing capabilities to help our customers build new life-enhancing, feature-rich devices. This will open new possibilities for extended-use hearable applications including virtual assistants, augmented hearing and enhanced listening,”

This is important because Apple tends not to license out its chips, so for third party hearable and hearing aid manufacturers, they’ll need to reap this type of innovation from a company like Qualcomm to compete with the capabilities that Apple brings to market.

The next one is actually a dividend of a dividend. Smart speakers, like Amazon’s Echo, are cheap to manufacturer due to the smartphone supply chain and as a result have driven down the price of Digital Sound Processing (DSP) chips to a fraction of what they were. These specialized chips are used to process audio (all those Alexa commands) and have long been used by hearing aid manufacturers. Similar to the W1 chip, these chips provide a low-power method that can now be utilized by hearable manufacturers. More options for third party manufacturers.

So, with major tech powerhouses sparring against each other in the innovation ring, hearing aid and hearable manufacturers are able to reap that innovation at a cheap price, ultimately resulting in better devices for the consumers at a depreciating cost.

Chris Dixon - computers are getting smaller
Computers are steadily getting smaller – From Chris Dixon’s What’s Next in Computing

Sensory Overload

What’s on the horizon with the innovation happening within our ear-computers is where things really start to get exciting. The most obvious example of where things are headed are with the sensors being fit in these devices. Starkey announced at its summit this year an upcoming hearing aid that will contain an inertial sensor to detect falls. How can it detect people falling down? Another dividend – the same types of gyroscopes and accelerometers that we have in our phones that work in tandem to detect the orientation of our phones. This sensor combo can also be used to track overall motion, so not only can it detect a person falling down, but it can also serve as an overall fitness monitor. These are small enough and cheap enough now to where virtually any ear-worn device manufacturer can embed these types of sensors into their devices.

Valencell, a biometric sensor manufacturer, has been paving the way with what you can do when you implement heart rate sensors into our ear-worn devices. By using a combination of the metrics recorded by these sensors, you can measure things such as core temperature, which would be great for monitoring and alerting the user of the potential risk of heat exhaustion. You can also gather much more precise fitness metrics, such as intensity levels of one’s workout.

And then there are the efforts around one day being able to non-invasively monitor glucose levels through a hearing aid or hearable. This would most likely be done via some type of biometric sensor or combination of components derived from our smartphones as well. For the 29 million people living with diabetes in America, who also might suffer from hearing loss, a gadget that provides both amplification and glucose monitoring would be much appreciated and compelling.

These types of sensors serve as tools to create new use cases around both preventative health applications, as well as use cases designed for fitness enthusiasts that go beyond what exists today.

The Multi-Function Transformation

One of the reasons that I started this blog was to try and raise awareness around the fact that the gadgets we’re wearing in our ears are on the cusp of transforming from single-function devices, whether that be for audio consumption or amplification, into multi-function devices. All of these disparate innovations make it possible for such a device to emerge without limiting factors such as terrible battery life.

This type of transformation does a number of things. First of all, I believe that it will ultimately kill the negative stigma associated with hearing aids. If we’re all wearing devices in our ears for a multitude of reasons, for increasingly longer periods of time, then who’s to know why you’re even wearing something in your ear, let alone bat an eye at you?

The other major thing I foresee this doing is continue to compound the network effects of these devices. Much like our smartphones, when there is a critical mass of users, there tends to be a virtuous cycle of value creation spearheaded by developers, meaning there’s more and more you can do with these devices. No one could have predicted what the smartphone app economy would look like here in 2018, back in 2008. We’re currently in that same type of starting period with our ear-computers, where the doors are opening to developers to create all the new functionality. Smart assistants alone represent a massive wave of potential new functionality that I’ve written about extensively, and as of January 2018, hearable and hearing aid manufactures can easily integrate Alexa into their devices, thanks to Amazon’s Mobile Accessory Kit.

It’s hard to foresee what all we’ll use these devices for, but the ability for something akin to the app economy to foster and flourish is now enabled due to so many of these recent developments birthed by the smartphone supply chain. Challenges still remain for those producing our little ear-computers, but the fact of the matter is that the components housed inside these small gadgets are simultaneously getting cheaper, smaller, more durable and more sophisticated. There will be winners and losers as this evolves, but one winner that is obvious is the consumer.

-Thanks for reading-

Dave

 

 

2 thoughts on “The Innovation Happening Inside Hearables and Hearing Aids”

  1. I think you should follow Solar Ear http://www.solarear.org. They developed the first digital rechargeable hearing aid, FDA, CE approved starting at under $100. They are now working, using AI to have an ANDROID phone become a hearing aid.( $30), with the sound quality of a $3000 hearing aid. Their new program would make hearing health affordable and accessible for all.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s